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ABSTRACT 

Hypertension is widely attributable to genetic, 

behavioral, and environmental risk factors. Among 

the genetic reasons, angiotensin II enzyme, 

produced as a result of abnormal functioning of the 

renin–angiotensin system, is reported as the 

foremost cause of hypertension. A cascade of 

genes, including those encoding for WNK kinases 

(WNK1 and WNK4), Bp1, Bp2, angiotensinogen, 

and other enzymes, is involved in the conversion of 

angiotensin I to angiotensin II. However, the 

angiotensin-converting enzyme (ACE) plays a 

crucial role in this pathway. Therefore, ACE could 

be a potential therapeutic target in regulating the 

conversion of angiotensin I to angiotensin II and 

eventually controlling hypertension. In this study, a 

deep learning molecular docking-based approach 

was utilized for identifying and evaluating potential 

inhibitors of ACE present in herbs and other 

natural sources, on the basis of these compounds’ 

binding affinities and other physicochemical 

features. In addition, the suitability of these 

inhibitors as drugs for biological systems, 

considering their adsorption, distribution, 

metabolism, and excretion (ADME), was predicted 

using Lipinski’s rule. In conclusion, our study 

provides a novel and clearer insight into the 

interaction properties of known putative inhibitors 

of ACE.  

Keywords: angiotensin-converting enzyme; 

ligands; hypertension; molecular docking; drug 

design. 
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I. INTRODUCTION 
Hypertensive heart disease mostly known 

as hypertension refers to a group of disorders 

including heart failure, ischemic heart disease, and 

left ventricular hypertrophy and is becoming a 

major cause of death associated with high blood 

pressure worldwide [1]. Several genes including 

WNK1, WNK4, Bp1, Bp2, AGT, and ACE were 

reported to be involved in hypertension  

.[2] Mutation in WNK1 and WNK4 genes 

could cause disturbances in the homeostasis of K+ , 

salts, and pH level [3], whereas a mutation in AGT 

genes present on chromosome 1 results in an 

imbalance of angiotensinogen production, 

ultimately leading to hypertension [4-6]. It was 

revealed that ACE plays a key role in hypertension, 

its dysfunction being the most frequent cause of 

hypertension [7]. The most common biological 

reason behind hypertension is the production of 

angiotensin II enzyme, which is produced from the 

conversion of angiotensin I by the action of a series 

of the enzymes [18-10]. Therefore, regulating the 

conversion of angiotensin I to angiotensin II could 

be an effective strategy to control hypertension.  

Angiotensin-converting enzyme (ACE) is 

considered crucial in this pathway and has received 

considerable attention as a therapeutic target for 

controlling hypertension. Repressing ACE 

expression has been proved as an effective strategy 

in controlling hypertension, as its downregulation 

will inhibit the conversion of angiotensin I to 

angiotensin II [11]. A large number of medicinal 

plants possess diverse natural compounds, 

contributing to drug development by providing 

novel candidate therapeutic agents against various 

diseases. Natural compounds are small molecules 

synthesized by living organisms, including primary 

and secondary metabolites [12]. Accumulating 

evidence has shown that the ingestion of bioactive 

natural compounds, such as phytochemicals, 

antioxidants, vitamins, and minerals, through a diet 

rich in herbs, fruits, vegetables, and spices may 

promote health via negative immune-regulatory 

and anti-inflammatory activities [13-15]. 

Moreover, many natural compounds have been 

proven to play an important role as modulators of 

cell signaling andhomeostasis, which enforces the 

need to identify the medicinal potentials of 

bioactive natural compounds [16-17]. 

In this study, the binding affinitiesof 

various natural and herbal inhibitors for active sites 

of ACE were predicted using the molecular 

docking approach, which is becoming an extremely 

important tool in drug design. Molecular docking is 

playing a major role in structure-based molecular 

biology and computer-based drug design. The 

molecular docking methodology can be utilized to 

demonstrate the cooperation between a small 

molecule and a protein at the nanoscale, which 

empowers us to describe the behavior of small 

particles in the binding site of the proteins and 

explain key biochemical processes [18]. 

Furthermore, drug-likeness and compatibility with 

gastrointestinal and brain absorption were 

computed for tested to evaluate their suitability as 

potential therapeutic agents and orally active drugs 

for the treatment of hypertension. 

 

II. MATERIALS AND METHODS 
2.1. Physiochemical Properties  

The physiochemical properties of human 

ACE were predicted using Protparam [19]. The 

Protparam tool works on the basis of the Edelhoch 

method [13], determining the weight value of 

instability with respect to 400 different dipeptides 

(DIWV) and the hydropathy values for extinction 

coefficients, instability index (II), and GRAVY 

value (grand average of hydropathy value).  

 

2.2. Secondary Structure Predictions  

The number of helix turns and coils was 

calculated using ―Psipred‖ [14]. Psipred used two 

feed-forward neural networks which perform an 

analysis of output obtained from PSI–BLAST 

(Position-Specific Iterated–BLAST) for secondary 

structure prediction. 

 

2.3. Data Collection  

Plant-derived natural compounds and their 

chemical structure information were collected from 

KTKP (Portal, TCMID, COCONUT, and FooD, 

Drug information, including chemical structure and 

indication, was collected from DrugBank version 

5.1.5. The molecular targets of the drugs and 

natural compounds were collected from the 

DrugBank, CTD, STITCH, and TTD databases. In 

this study, we used ------ natural compounds and ---

---approved and investigational drugs that have at 

least five molecular target information. 

 

2.4. Deep Learning-Based Prediction of the 

Medicinal Uses of Natural Compounds 

In this study, we used a deep learning 

model to predict the potential medicinal effects of 

natural compounds. For all natural compounds and 

drugs, the algorithm works in four steps: 1) 

collecting various types of natural compound and 

drug information from public databases; 2) 
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generating latent knowledge, molecular interaction, 

and chemical property features from the collected 

information via text mining, network analysis, and 

chemical property analysis; 3) training the deep 

learning model based on the features of the 

approved and investigational drugs as inputs and 

their indication information as outputs; and 4) 

predicting the medicinal uses of natural compounds 

based on the trained deep learning model. 

 

 
Figure 1:Architecture of the deep learning model for predicting the potential effects of natural compounds. 

The proposed model consists of four 

sequential layers (Figure 1): 1) input layer, 2) 

partially connected hidden layers, 3) fully 

connected hidden layers, and 4) output layer. The 

models were generated for 15 diseases, 

respectively, to predict the effects list from input 

features. For each drug or natural compound, we 

generated latent knowledge, molecular interaction, 

and chemical property features and used them as 

the inputs of the model. Hidden layers generalized 

their outputs by providing a high-level 

representation that was more abstract than the 

previous layer by discovering nonlinear  

relationships between the low- and high-level 

data.Let Xl is the output of the lth hidden layer. The 

forward propagation of the neural network with lth 

hidden layer can be represented as follows: 

 
whereWl  [wl1, wl2, ... , wln] is the weight 

matrix of the edge from l-1st layer to lth layer, bl is 

the bias of each hidden units, and f (·) is the 

activation function. In this study, the hidden layers 

were divided to two parts: the partially connected 

and fully connected parts. 

  

  

2.5. Molecular docking  
In this study, molecular docking of natural 

inhibitors of ACE was performed using diverse 

computational tools, with the aim to discover the 

optimum inhibitor, which ultimately would provide 

the basis for designing drugs against hypertension 

by inhibiting ACE. The structure-based docking 

method was used because structure-based 

Computer Aided Drug Designing (CADD) relies 

on the knowledge of the target protein structure to 

calculate interaction energies for all compounds 

tested, whereas ligand-based CADD exploits the 

knowledge of known active and inactive molecules 

through chemical similarity searches or 

construction of predictive, QSAR models. 

Structure-based CADD is generally preferred 

where high-resolution structural data of the target 

protein are available, i.e., for soluble proteins that 

can readily be crystallized. These advancements in 
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research allow computational techniques to analyze 

all factors involved in drug design and discovery. 

 

 

2.6. Lipinski’s Rule of Five for Drug-Likeness or 

ADME (Absorption, Distribution, Metabolism, 

and Excretion) Analysis: 

Drug-likeness of our inhibitors, including 

absorption, distribution, metabolism, and excretion 

of these inhibitors within the body, was predicted 

using SwissADME. The Egan BOILED-Egg 

method available in SwissADME tool was used for 

the determination of the absorption of the inhibitors 

in the gastrointestinal tract and brain. BOILED-Egg 

(Brain or IntestinaLEstimateD permeation 

predictive model), also called Egan egg, provides a 

threshold (WLOGP ≤ 5.88 and TPSA ≤ 131.6) and 

a clear graphical representation of how far a 

molecular structure is from the ideal one for good 

absorption [40]. In this 2D graphical 

representation, the yolk area represents the 

molecules that can passively permeate through the 

blood–brain barrier (BBB), whereas the molecules 

located in the white region are predicted to be 

passively absorbed by the gastrointestinal (GI) 

tract. 

 

III. 3. RESULTS AND DISCUSSION 
3.1. Physiochemical Properties of ACE  

Human ACE was found to exhibit a 

molecular weight of 67,993.2 Daltons and 

isoelectric pH 5.82. It is a stable protein with an 

aliphatic index of 78.86, whereas its instability 

index was predicted to be 39.46. The prediction of 

GRAVY value of −0.4441 demonstrates that ACE 

is a hydrophilic peptide (Table 1).Predicted 

pharmacological effects of natural compounds in 

hypertension are Reserpine, Norepinephrine, 

Octopamine, Digitoxin. 

 

Table1.Physiochemical properties of ACE predicted by ProtParam. 

Property Value 

Number of amino acids 589 

Total number of atoms 9457 

Molecular Weight 67,993.20 Dalton 

Theoretical pI 5.82 

Instability index 39.46 

Aliphatic index 78.86 

Grand average of hydropathicity (GRAVY) −0.441 

Chemical Formula C3076H4656N818O883S24 

Charge Negative 

 

 

3.2. Natural inhibitors of ACE 

The 2D structures of reported inhibitors of 

ACE were downloaded from PubChem in SDF 

format and are portrayed in Figure 4. Herbal and 

Natural Inhibitorsinhibitors were in the pocket of 

the target protein (ACE), exhibiting a possible 

interaction with ACE. The docking results were 

manipulated using the GBVI/WSA dG scoring 

function with the generalized Born solvation model 

(GBVI). The GBVI/WSA dG is a force fifield-

based scoring function, which estimates the free 

energy of binding of the ligand from a given 

orientation. Interaction results were evaluated with 

the S score.  
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Figure 2. 2D structures of various ACE inhibitors including (A) Benazepril, (B) Captopril, (C) Cilazapril, (D) 

Enalapril, (E) Fosinopril, (F) Lisinopril, (G) Moexipril, (H) Perindopril, (I) Quinapril, (J) Ramipril, (K) 

Trandolapril, (L) Allicin, and (M) Teprotide. 

 



 

 

International Journal of Pharmaceutical Research and Applications 

Volume 8, Issue 2 Mar-Apr 2023, pp: 1782-1790 www.ijprajournal.com   ISSN: 2249-7781 

                                      

 

 

 

DOI: 10.35629/7781-080217821790  | Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal Page 1787 

 

Figure 3:Performance evaluations of predicted medicinal effects of natural compounds. 

3.3.Molecular docking 

In silico docking of human ACE against 

selected inhibitors was performed using MOE 

against all the predicted active sites. The results 

showed that all selected to establish a strong 

interaction with ACE on specifific active sites 

(Table 2). After in silico docking, we identifified a 

ligand showing the minimum S score among all the 

inhibitors. Teprotide, which is present in snake 

venom, showed a minimum S score of −20.1163; 

therefore, it establishes the strongest interaction 

with ACE among all the inhibitors discussed in this 

study. Fosinopril is another widely used and 

effective drug against hypertension. It was 

predicted to exhibit a strong binding affinity for 

ACE, with an S score of −18.9225. Earlier studies 

demonstrated that fosinopril doses of 10 and 20 mg 

could inhibit 85% and 93% of ACE activity, 

respectively, within 24 h of administration [55]. 

Hayek et al. used ACE as a receptor and fosinopril 

as an inhibitor to cure hypertension and concluded, 

after 12 weeks of treatment, that fosinopril 

remarkably reduces blood pressure in mice [56]. 

Heart Outcomes Prevention Evaluation Study 

Investigators evaluated the role of ramipril in 

reducing the overactivity of ACE and showed that 

ramiprilsignificantly lessens the rates of myocardial 

infarction and stroke in a wide range of high-risk 

patients. 

 

Table 2:Inhibitors ranked on the basis of their S-values. 
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3.4. Drug likeliness and ADME predictions of 

our inhibitors 

The antagonistic interaction of inhibitors 

with a receptor protein or enzyme cannot guarantee 

the suitability of an inhibitor as a drug; therefore, 

ADME analysis of inhibitors is important in the 

drug development. ADME is based on Lipinski’s 

rule of fifive [59] and helps to make decisions on 

the approval of inhibitors for biological systems. 

Poor ADME characteristics and unfavorable 

toxicology for a biological system are the major 

cause of the failure of most medicines in clinical 

experiments. 

All of the inhibitors or ligands discussed 

herein satisfy the Lipinski’s rule, except for 

teprotide, which signifificantly violates three 

parameters (MW > 500, number of hydrogen bond 

donors > 5 and number of hydrogen bond acceptors 

> 10); furthermore, it also violates the BOILED-

egg method. Although teprotide has the highest 

binding affifinity for human ACE among all the 

inhibitors, it is not proposed as an orally active 

drug due to violation of the Lipinski’s rule. An 

Egan’s egg graph for the inhibitors was generated 

using SwissADME. The graph showed that only 

allicin, a herbal compound, is absorbed by the 

brain, though in the acceptable range. The 

remaining inhibitors showed gastrointestinal 

absorption within an acceptable range, except for 

teprotide and lisinopril (WLOGP >5.88 and TPSA 

>131.6) (Figure 3). 

 
Figure 4:Evaluation of the analyzed ligands by the BOILED-Egg method 
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Table 3:Lipinski’s rule of five for ADME 

 

So, on the basis of Egan’s boiled-egg rule 

threshold values (WLOGP ≤ 5.88 and TPSA ≤ 

131.6), only allicin penetrates the blood–brain 

barrier, though within acceptable limits. The blue 

dots indicate molecules predicted to be efflfluated 

from the CNS by P-glycoprotein, and the red dots 

indicate molecules predicted not to be efflfluated 

from the CNS by P-glycoprotein. 

 

IV. CONCLUSIONS 
In this study, fosinopril was predicted as 

the best ACE inhibitor (with maximum binding 

affinity for ACE after teprotide) to be used as a 

potentially therapeutic orally active drug (on the 

basis of Lipinski’s rule of five and BOILED-egg 

approach) for the treatment of hypertension. 

Among the animal inhibitors, teprotide showed the 

highest binding affinity compared to all other 

ligands studied here; however, according to 

Lipinski’s rule and BOILED-egg method, it is not 

recommended as a suitable therapeutic agent. 

Furthermore, allicin, an herbal ligand, exhibited 

reasonable binding affinity for ACE and follows 

Lipinski’s rule of five but can only be used as food 

because of its slight absorption in the brain. In 

conclusion, our study provides a clearer insight into 

the interaction properties of known putative 

synthetic inhibitors of ACE and bioactive 

inhibitors, including interactions with the blood–

brain barrier. In recent years, consumers have paid 

attention to natural bioactive compounds as 

potential medicines because of their effectiveness 

in promoting health, associated with less adverse 

effects. In future, we will be able to use the 

knowledge of inhibitors’ pharmacological 

properties, including those of bioactive compounds 

such as allicin, to make effective therapeutic drugs 

based on ACE inhibition to cure hypertension. 
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